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ABSTRACT 

This paper is devoted to introduce a special classes of (QC-LDPC) with very restricted code parameters based on 

planar difference families. Such difference families could be obtained by numerical analysis and computer programs. The 

resulting codes have parity check matrices with column-weight greater than three, at least no 4-cycle and approximately 

full rank. It can be noted that the construction based on planar difference families exhibits more flexibility than that based 

on difference sets in terms of length and code rate selections. Besides, the more increasing in the column-weights of parity 

check matrices of QC-LDPC codes, the more improvement in the minimum distances of them. Simulation results show 

that over the additive white Gaussian noise channel, these codes could outperform their randomly constructed counterparts. 
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INTRODUCTION 

Low-density parity-check (LDPC) codes were first presented by Gallager in1962 [1] and have created much 

interest recently when rediscovered and shown to perform remarkably close to the Shannon limit [2]. Quasi-cyclic        

low-density parity-check (QC-LDPC) codes are a special class of LDPC codes whose parity check matrices consist of 

circulant matrices. Quasi cyclic LDPC codes have attracted much interest in research because the quasi-cyclic structure 

facilitates the encoder and decoder implementations [3]. A greedy algorithm which maximizes the length of cycles in the 

parity-check matrix and offers an excellent performance is the progressive edge growth (PEG) algorithm [4]. 

Unfortunately, the generator matrix of PEG-LDPC construction is not sparse so encoding is more costly due to the required 

matrix multiplication. Quasi-cyclic PEG allows low-complexity encoding as well as decoding [5]. A (J,K)-regular LDPC 

code is defined by a parity-check matrix H in which each column has weight J and each row has weight K.  

Some researchers considered a special class of regular QC-LDPC codes whose circulant matrices are circulant 

permutation matrices. It has been proved that any (J, K)-regular QC-LDPC code of this classes has minimum distance 

always upper bounded by (J + 1)!, and girth upper bounded by 12 [6]. 

In this paper, we extend the construction of moderate to high rate QC-LDPC codes to the ones that are based on 

planar cyclic difference families or planar perfect difference families (PCDF or PPDF) [7] to obtain restricted parameters 

LDPC code families with a less redundancy and a large scale of rate selections. 

A regular QC LDPC codes with parity-check matrices consisting of a single row block of circulants with the 

column-weight > 3 are proposed based on PCDF or PPDF. They are at least no 4-cycle classes of codes. It can be shown 

that there is an improvement in their minimum distances along with the increasing in the column-weight of their         

parity-check matrices. 
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Numerical analysis shows that the proposed QC LDPC codes of moderate to high lengths exhibit somewhat 

performance improvements than that of the existing similar classes of QC LDPC codes. 

The remainder of the paper is organized as follows. Section II introduces the definition and the existence theorems 

of PCDF and PPDFs, and provides a construction method of those classes. In Section III, regular QC LDPC codes are 

proposed and analyzed. 

In Section IV, the error correcting performance of the proposed QC LDPC codes is compared to some of the 

existing LDPC codes via numerical analysis. Finally, we draw some conclusions and future works and in Section V. 

DIFFERENCE FAMILIES 

We begin our concept theorems by defining the difference set. 

Definition 1 

Consider the Abelian additive group Zv ={0, 1, 2, · · · , v −1} of order v. A k-subset D = {d1, · · · , dk} of Zv is 

called a (v, k, λ)-difference set for Zv if every nonzero element of Zv has precisely λ distinct expressions di  − dj  mod v in 

terms of elements of D. 

Definition 2 

Consider the additive group Zv = {0, 1,….. , v - 1}. Then t k-element subsets of Zv, Bi = {bi1, bi2,….. , bik },        

i = 1,2, …. , t, bi1 < bi2 < ….< bik  , form a (v, k, λ) cyclic difference family (CDF) if every nonzero element of Zv occurs λ 

times among the differences bim − bin  , i = 1, 2, …… , t , m ≠n , m,n = 1,2,….., k. 

This (v, k, λ)-CDF is called a planar CDF in short PCDF if λ=1 and it is called a (v, k, λ)-planar perfect difference 

family in short (v, k, λ)-PPDF if and only if λ=1 and for v= k(k-1)t+1 a tk(k-1)/2 forward differences bim − bin  cover the 

subset {(v-1)/2+1, ………, v-1} and the remaining tk(k-1)/2 backward differences cover the subset {1,2, ….. ,(v -1)/2} 

over Zv [8]. 

The existences of PCDFs are summarized in the following theorem [8]-[10]. 

Theorem 1: The existence of (v, k, 1)-PCDFs is given as: 

 A (6t + 1, 3, 1)-CDF exists for all t ≥ 1 with v=k(k-1)t+1=6t+1. 

 A (12t+1,4, 1)-CDF exists for all 1 ≤ t ≤1000 with v=k(k-1)t+1=12t+1. 

 (20t + 1, 5, 1)-CDF exists for 1 ≤ t ≤50 and t ≠ 16,25,31,34,40,45 with v=k(k-1)t+1=20t+1 [9]. 

 (v, 6, 1)-CDF exists for any prime power v=1 (mod 30) ,v ≠ 61. 

 (v, 7, 1)-CDF exists for any prime power v=1 (mod 42) ,v ≠ 43, possibly for v = 127, 211,316, and primes v ∈ 

[261239791, 1.236597. 1013] such that (−3)
v−1

14  = 1 in GF(v) [8]-[9]. 

Proof: Is omitted. 

The existences of PPDFs are summarized in the following theorem [11]. 

Theorem 2: The existence of (k(k-1)t + 1, k, 1)-PPDFs is given as: 

 A (6t + 1, 3, 1)-PDF exists if and only if t = 0 or 1 mod 4. 
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 A (12t+1,4, 1)-PDF exists for t = 1, 4 ≤ t ≤1000. 

 (20t + 1, 5, 1)-PDFs are known for t = 6, 8, 10 but for no other small value of t. 

 There is no (k(k - 1)t + 1, k, 1)-PDF for k = 6. 

Proof: Is omitted. 

An obvious necessary condition for the existence of a (v, k, 1)-DF is v= 1, k (mod k(k-1)). 

QC LDPC CODES CONSTRUCTED FROM PLANAR DIFFERENCE FAMILIES 

Consider a regular QC-LDPC code whose parity check matrix H consists of two row blocks array of circulants. A 

circulant is entirely described by the positions of nonzero elements in the first column. With the aid of a special cases of  

(v, k, λ)- PCDF or PPDF we construct H matrix consists of two row blocks. Each row block is an array of circulant 

matrices. For 1 ≤ i ≤ t, the first row block is denoted by H′=[A1
′ … At

′ ] matrices and the second block is denoted by         

H"= [A1
"  …… At

"] matrices.  

Ai
′  is a k × k circulant matrix (circulant matrix such that each row is a cyclic shift of the row above it). Its first row 

has k-column elements those are the elements of one of the t k-sets of (v, k, 1)-DFs elements modulo v, respectively. 

Ai
" is a k × k circulant matrix and its first row has k-column elements fulfilled with the negative elements of that 

one of the t k-sets of (v, k, 1)-DFs elements modulo v, respectively. 

For α be a primitive field element for a Galois field Fq. The (q−1)  ×  (q−1) dispersed matrix associated             

with αk , denoted D(αk), is defined by matrix, 

D(αk)=

 

 
 
 
 
 

0 0 0 . . αk … … 0 0
0 0 0 . . 0 αk+1 … 0 0
0 0 0 0 0 0 … 0 0
0 0 0 0 0 0 … 0 αq−2

1 0 0 0 0 0 … 0 0
0 α1 0 0 0 0 … 0 0
0 0 … 0 0 0 … 0 0
0 0 0 αk−1 0 0 … 0 0  

 
 
 
 
 

. 

So, with v=q-1, each element of k x k circulant matrix Ai
′  (and Ai

") is dispersed by a v × v circulants over Fq, 

denoted by D(αk) previously defined, or dispersed by a v × v binary circulants emerged from replacing each nonzero entry 

of D(αk) with „1‟. 

The resultant parity-check matrix H is a double row ( 
H ′

H") of t−k × k array of v × v circulants over F2 or Fq     

(mod q-1). 

Suppose that α is a primitive field element of a q-element field Fq and Di  = {di 1, di 2,….. , di k}, i = 1,2, …. , t, 

bi 1 < bi 2 < ….< bi k , form a (v, k, 1)-CDFs or a (v, k, 1)-PDFs for Zv where v = q−1 = k(k-1)t + 1, we have the following 

theorems. 

Theorem 3: Associated with αk , the (q−1)  ×  (q−1) dispersed matrix (denoted by D( αk )) of the combined 2k ×  k 

Ai =(
A i

′  

A i
"),1≤ i ≤ t, circulant matrix mod(q-1) and its binary version, with k is odd, has no 4-cycles tanner graph. 

Proof: See appendix A. 



20                                                                       Shady M. Ibraheem, M. M. Abd Elrazzak, Salwa M. Serag Eldin, W. Saad & Atef E. Aboelazm 

Example1: Consider the (13, 3, 1)-CDF Di  = {di 1, di 2,….. , di k}, i = 1,2, for Z13 and the field F14. 

In this case k = 3 is odd. 

A (6 × 2 + 1, 3, 1)-CDF: 

D1={0, 3, 12} with differences 3, 12, 9. 

D2={0, 5, 11} with differences 5, 11, 6. 

Negative sets are, 

D−1={0, 10, 1} with differences 10, 1, 4. 

D−2={0, 8, 2} with differences 8, 2, 7. 

The combined 2k × k Ai = (
A i

′  

A i
") circulant matrices mod (q-1) for i = 1,2. 

A1 =

 

  
 

0 3 12
3 12 0

12 0 3
0 10 1

10 1 0
1 0 10 

  
 

A2 =

 

 
 
 

0 5 11
5 11 0

11 0 5
0 8 2
8 2 0
2 0 8  

 
 
 

. 

The null space of each matrix represents a code that has a Tanner graph with no 4-cycles. 

Example 2: Consider the (25, 3, 1)-PDF Di  = {di 1, di 2,….. , di k} , i = 1,2,3, for Z25 and the field F26.  

In this case k = 3 is odd. 

A (6 × 4 + 1, 3, 1)-PDF: 

D1={0, 2, 12} with differences 2, 12, 10. 

D2={0, 3, 11} with differences 3, 11, 8. 

D3={0, 1, 7} with differences 1, 7, 6. 

D4={0, 4, 9} with differences 4, 9, 5. 

Negative sets are 

D−1={0, 23, 13} with differences 23, 13, 15. 

D−2={0, 22, 14} with differences 22, 14, 17. 

D−3={0, 24,18} with differences 24, 18, 19. 

D−4={0, 21, 16} with differences 21, 16, 20. 

The combined 2k × k Ai =(
A i

′  

A i
") circulant matrices mod (q-1) for i = 1,2,3. 

                 A1 =

 

  
 

0 2 12
2 12 0

12 0 2
0 23 13

23 13 0
13 0 23 

  
 

 A2 =

 

  
 

0 3 11
3 11 0

11 0 3
0 22 14

22 14 0
14 0 22 
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                 A3 =

 

  
 

0 1 7
1 7 0
7 0 1
0 24 18

24 18 0
18 0 24 

  
 

 A4 =

 

  
 

0 4 9
4 9 0
9 0 4
0 21 16

21 16 0
16 0 21 

  
 

. 

The null space of each matrix represents a code that has a Tanner graph with no 4-cycles. 

Example 3: Consider the (49, 4, 1)-PDF Di  = {di 1, di 2,….. , di k} , i = 1,2, ….4, for Z49 and the field F50. In this case     

k = 4 is even. 

A (12 × 4 + 1, 4, 1)-PDF: 

D1={0, 5, 22, 24} with differences 5, 22, 17, 24, 19, 2. 

D2={0, 7, 13, 23} with differences 7, 13, 6, 23, 16, 10. 

D3={0, 3, 14, 18} with differences 3, 14, 11, 18, 15, 4. 

D4={0, 1, 9, 21} with differences 1, 9, 8, 21, 20, 12. 

Negative sets are 

D−1={0, 44, 27, 25} with differences 44, 27, 32, 25, 30, 47. 

D−2={0, 42, 36, 26} with differences 42, 36, 43, 26, 33, 39. 

D−3={0, 46, 35, 31} with differences 46, 35, 38, 31, 34, 45. 

D−4={0, 48, 40, 28} with differences 48, 40, 41, 28, 29, 37. 

The combined 2k × k Ai =(
A i

′  

A i
") circulant matrices mod (q-1) for i = 1,2,…4. 

                 A1 =

 

 
 
 
 
 

0 𝟓 22 𝟐𝟒
5 22 24 0

22 24 0 5
24 0 5 22
0 44 27 25

44 27 25 0
27 𝟐𝟓 0 𝟒𝟒
25 0 44 27 

 
 
 
 
 

A2 =

 

 
 
 
 
 

0 𝟕 13 𝟐𝟑
7 13 23 0

13 23 0 7
23 0 7 13
0 42 36 26

42 36 26 0
36 𝟐𝟔 0 𝟒𝟐
26 0 42 36 

 
 
 
 
 

 

                A3 =

 

 
 
 
 
 

0 𝟑 14 𝟏𝟖
3 14 18 0

14 18 0 3
18 0 3 14
0 46 35 31

46 35 31 0
35 𝟑𝟏 0 𝟒𝟔
31 0 46 35 

 
 
 
 
 

A4 =

 

 
 
 
 
 

0 𝟏 9 𝟐𝟏
1 9 21 0
9 21 0 1

21 0 1 9
0 48 40 28

48 40 28 0
40 𝟐𝟖 0 𝟒𝟖
28 0 48 40 

 
 
 
 
 

 

We observe that the bold numbers lead to cycles of length four. So, we can use the left or right hand side halves as 

matrices whose null spaces represent codes that having a Tanner graph free of cycles of length four. 

Theorem 4: Associated with αk , if k is even, then, the (q−1) × (q−1) dispersed matrix (denoted by D(αk)) of the combined 

2(k-1) × k-1 Ai =(
A i

′  

A i
"), 1≤ i ≤ t, circulant matrices mod(q-1) resulting from the construction using (v, k, 1)-CDFs or PDFs 

with Di  = {di 1, di 2,….. , di k−l−1 , di k−l+1 ,… . . , di k}, where 0 ≤ l ≤ k-1 has no 4-cycles tanner graph, individually. 

Proof: See appendix B. 
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Example 4: From example 3, we observe that the following matrices are free of cycle four,  

 A11 =

 

 
 
 

0 𝟓 22
5 22 0

22 0 5
0 44 27

44 27 0
27 𝟎 44 

 
 
 

 A21 =

 

  
 

0 𝟕 13
7 13 0

13 0 7
0 42 36

42 36 0
36 𝟎 42 

  
 

 

                 A31 =

 

  
 

0 𝟑 14
3 14 0

14 0 3
0 46 35

46 35 0
35 𝟎 46 

  
 

 A41 =

 

  
 

0 𝟏 9
1 9 0
9 0 1
0 48 40

48 40 0
40 𝟎 48 

  
 

, 

where Ai1are the modified versions of Ai for i=1,2 …4. The results obtained in the previous discussions in this 

section provide the ground for the construction of a restricted class no girth-four QC-LDPC codes. 

Theorem 5: Associated with αk , the (q−1)  ×  (q−1) dispersed matrix (denoted by D( αk )) of the combined                       

H = (
H ′

H") = (A1 A2 … . Ai) = (
A1

′  

A1
"  

A2
′  

A2
" … .

A i
′  

A i
"), 1≤ i ≤ t, matrix mod(q-1) under the above mentioned conditions, i.e. for odd 

and modified even cases of k, has no 4-cycles tanner graph if Di ∩  Dj = ∅ , ∀  1 ≤  i,j ≤ t , i ≠  j and                                        

∀ a,b ∈ Di ,c,d ∈ Dj → a – c ≠ d – b. For Di ∩  Dj  = e ≠ ∅, 1≤ i,j ≤ t , i ≠ j. If, we replace all e shifts of the resultant 

matrix by zero matrices, then, H has also no 4-cycles tanner graph.  

Proof: See appendix C. 

The proof is built upon the ideas that for the case of PPDF, the pairs of differences of the upper half of the matrix 

are distinct due to the property of PDF and cover backward differences of the subset {1,2, ….. ,(v -1)/2} over Zv. In 

addition to the fact that the lower half parts of the matrix are subsets of Dev(D) (the development of D) and their pairs of 

differences are distinct and cover forward differences of the subset {(v-1)/2+1, ………, v-1} over Zv. Unlikely, for the 

case of PCDF, the pairs of differences of the upper half of the matrix cover mixed forward and backward differences over 

Zv group that differ in value from their lower half differences counterparts. 

Example 5: For the following two matrices B1, B2 from example 2, 3-4, respectively.  

 B1 =

 

  
 

𝟎 2 12 𝟎 3 11 𝟎 1 7 𝟎 4 9
2 12 𝟎 3 11 𝟎 1 7 𝟎 4 9 𝟎

12 𝟎 2 11 𝟎 3 7 𝟎 1 9 𝟎 4
𝟎 23 13 𝟎 22 14 𝟎 24 18 𝟎 21 16

23 13 𝟎 22 14 𝟎 24 18 𝟎 21 16 𝟎
13 𝟎 23 14 𝟎 22 18 𝟎 24 16 𝟎 21 

  
 

 

               B2 =

 

 
 
 

𝟎 5 22 𝟎 7 13 𝟎 3 14 𝟎 1 9
5 22 𝟎 7 13 𝟎 3 14 𝟎 1 9 𝟎

22 𝟎 5 13 𝟎 7 14 𝟎 3 9 𝟎 1
𝟎 44 27 𝟎 42 36 𝟎 46 35 𝟎 48 40

44 27 𝟎 42 36 𝟎 46 35 𝟎 48 40 𝟎
27 𝟎 44 36 𝟎 42 35 𝟎 46 40 𝟎 48 

 
 
 

 

We have over F50 with v=49 of B2. If each element k of the matrix is dispersed by a v × v circulants over Fq, 

denoted by D(αk) previously defined or dispersed by a v × v binary circulants emerged from replacing each nonzero entry 

of D(αk) with „1‟, then, this matrix is free of cycles of length four. 

Hint: The bold zeros are dispersed to the zero matrix mod v 
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Over F26 with v=25 of B1 under the same conditions this matrix has cycles of length four. As, for 2, 12 ∈ D1 and 

3,11 ∈ D2 there exist 12-11=3-2. So, by eliminating a sub-matrices that belong to D1 and D−1 , if each element k of the 

resultant matrix 

𝐁𝟏𝐫𝐞𝐬𝐮𝐥𝐭𝐚𝐧𝐭 =

 

  
 

𝟎 3 11 𝟎 1 7 𝟎 4 9
3 11 𝟎 1 7 𝟎 4 9 𝟎

11 𝟎 3 7 𝟎 1 9 𝟎 4
𝟎 22 14 𝟎 24 18 𝟎 21 16

22 14 𝟎 24 18 𝟎 21 16 𝟎
14 𝟎 22 18 𝟎 24 16 𝟎 21 

  
 

 

is dispersed by a v × v circulants over Fq ,denoted by D(αk) previously defined or dispersed by a v × v binary 

circulants emerged from replacing each nonzero entry of D(αk) with „1‟, then, this matrix is free of cycles of length four. 

For the case of PPDF, in order to increase the minimum distance of the proposed codes, preserve the weight distribution 

and girth characteristics, one can disperse the zero matrices by a v × v circulants (previously interpreted) for the upper and 

lower parts interchangeably as follows, 

𝐁𝟏𝐫𝐞𝐬𝐮𝐥𝐭𝐚𝐧𝐭
′ =

 

  
 

𝟎 3 11 0 1 7 𝟎 4 9
3 11 𝟎 1 7 0 4 9 𝟎

11 0 3 7 𝟎 1 9 0 4
0 22 14 𝟎 24 18 0 21 16

22 14 0 24 18 𝟎 21 16 𝟎
14 𝟎 22 18 0 24 16 𝟎 21 

  
 

, 

𝐁𝟐′=

 

 
 
 

𝟎 5 22 0 7 13 𝟎 3 14 0 1 9
5 22 𝟎 7 13 0 3 14 𝟎 1 9 0

22 0 5 13 𝟎 7 14 0 3 9 𝟎 1
0 44 27 𝟎 42 36 0 46 35 𝟎 48 40

44 27 0 42 36 𝟎 46 35 0 48 40 𝟎
27 𝟎 44 36 0 42 35 𝟎 46 40 0 48 

 
 
 

 

where t is an even number, the normal zeroes are dispersed by identity v × v matrices and the bold zeroes are 

dispersed by zero matrices mod v. It can be shown that 𝐁𝟏𝐫𝐞𝐬𝐮𝐥𝐭𝐚𝐧𝐭
′  and B2′ matrices are full rank matrices, but 𝐁𝟏𝐫𝐞𝐬𝐮𝐥𝐭𝐚𝐧𝐭

′  

matrix leads to irregular LDPC code. 

Example 6: Consider the (101,5,1)-CDF. Let v= 101, k = 5, then, a set of base blocks of (101, 5, 1)-

CDF={D1 …D5 }={{0,100,98,76,71},{0,17,51,21,74},{0,36,7,92,26},{0,14,42,47,55},{0,95,83,52,63}} over Z101 group 

and the field F102. {{0,100,98,76,71},{0,17,51,21,74},{0,36,7,92,26},{0,14,42,47,55} , {0,95,83,52,63}} are the set of 

negative blocks, so, the null space of the H matrix =  

 

 

 
 
 
 
 
 
 

0 14 42 47 55 0 95 83 52 63 0 17 51 21 74 0 36 7 92 26 0 100 98 76 71
14 42 47 55 0 95 83 52 63 0 17 51 21 74 0 36 7 92 26 0 100 98 76 71 0
42 47 55 0 14 83 52 63 0 95 51 21 74 0 17 7 92 26 0 36 98 76 71 0 100
47 55 0 14 42 52 63 0 95 83 21 74 0 17 51 92 26 0 36 7 76 71 0 100 98
55 0 14 42 47 63 0 95 83 52 74 0 17 51 21 26 0 36 7 92 71 0 100 98 76
0 87 59 54 46 0 6 18 49 38 0 84 50 80 27 0 65 94 9 75 0 1 3 25 30

87 59 54 46 0 6 18 49 38 0 84 50 80 27 0 65 94 9 75 0 1 3 25 30 0
59 54 46 0 87 18 49 38 0 6 50 80 27 0 84 94 9 75 0 65 3 25 30 0 1
54 46 0 87 59 49 38 0 6 18 80 27 0 84 50 9 75 0 65 94 25 30 0 1 3
46 0 87 59 54 38 0 6 18 49 27 0 84 50 80 75 0 65 94 9 30 0 1 3 25  

 
 
 
 
 
 
 

 

Represents a code that has a rate of 0.6, five redundant rows and a Tanner graph free of cycles of length four.  

SIMULATION RESULTS 

The error correcting performance of the proposed QC LDPC codes is compared with random-like progressive 

edge-growth (PEG) and QC-PEG LDPC codes, the best ones were recognized by [4-5], [12]. As possible, the parameters 
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are nearly the same. Results are obtained using sum-product decoding algorithm under the additive white Gaussian noise 

(AWGN) channel and BPSK modulation is considered. The maximum number of iterations is set to 100. We collect at 

least 100 block errors per simulation point. All the comparable proposed codes are constructed based on Theorems 5. This 

theorem enables one to suppress or impress one or more sub-classes of quasi-cyclic circulants that belong to one or more 

subsets of difference family of the mother code, without any changes in the desired mother code characteristics and 

consequently, leads to more flexibility in the selection of rates of the proposed codes. For a target girth greater than six, 

further results could be obtained by suppress or impress one or more elements as well as sub-classes at this time.  

In the next, we simulate the binary dispersion of some mother matrices of previous examples taking in 

consideration that the constructed difference-family based codes have a good BER performance over AWGN channel 

decoded with iterative decoding using the Fast Fourier Transform based q-ary sum-product decoding algorithm. 

BER Performance of a Proposed Regular (4, 6) QC-LDPC Code 

A proposed regular (4,6)-quasi cyclic LDPC code of rate 1/3, whose mother parity check matrix 𝐁𝟏𝐫𝐞𝐬𝐮𝐥𝐭𝐚𝐧𝐭 is 

dispersed in a binary manner, is compared with random-like progressive edge-growth (PEG) LDPC and QC-PEG LDPC 

codes. This code is based on (25, 3, 1)-PDF over F26. It has a length of 225 and only three redundant rows. The bit error 

rate (BER) performance of those LDPC codes is shown in Figure 1, with considerably the same code parameters. 

According to this figure, the PEG, QC-PEG and proposed-QC girth-six codes perform almost closely in the low SNR 

region. This is unlikely occur in the high SNR, as the proposed code begins to introduce a good error floor performance. 

BER Performance of Proposed Regular (4, 8) and (5,10) QC-LDPC Codes 

Figure 2 provides a BER performance of a redundant proposed regular (4,8)-quasi cyclic LDPC code of rate 1/2 

based on parity check matrix B2 and a full rank proposed regular (5,10)-quasi cyclic LDPC code based on parity check 

matrix B2′. The density of the parity check matrix B2′ is shown in Figure 3. 

For further comparison a PEG construction, QC-PEG and Modified PEG of [4-5], [12] and [13] were used, 

respectively. The proposed codes have a length of 300 and a dimension of 150 and is based on (49, 4, 1)-PDF over F50. 

The parity check matrix B2 is modified to form the B2′ full rank matrix. As expected from Figure 2, the two proposed 

codes outperform both PEG and QC-PEG constructions especially in the high SNR region by a considerable margin. This 

is due to ideal diversity of none-zero elements in their parity check matrices. 

This gain is seen obviously in the error floor region a result of the large degree of their tanner graph connectivity. 

It can be seen that the two proposed codes perform almost exactly as well in the low SNR region. The benefits of the full 

rank one appear in the error floor region. We observe that the Modified PEG construction is slightly better than the 

proposed codes. However, error floor starts to appear when the BER is closed to 10−6 . Hence, both proposed codes 

introduce lower error floors. The values of t and k, i.e. the number of subsets of a difference family and the number of 

elements inside every subset, determine the principle of the code length and rate selection.  
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Figure 1: Performance Comparison between the Proposed QC Girth-Six (225,75)-LDPC 

Code and its PEG and QC-PEG Counterparts over AWGN Channel 

 

 

Figure 2: BER Performance Comparison between the Proposed QC Girth-Six (588,294)-LDPC 

Codes with PEG, QC-PEG and Improved PEG 

 

 

Figure 3: The Density of Non-Zero Elements of the Parity Check Matrix 𝐁𝟐′  

CONCLUSIONS 

In this paper (v,k, λ)-PCDFs or PPDFs were used to construct several classes of moderate to high rate                  

q-ary 4-cycle free (or more) quasi-cyclic LDPC codes and their dispersed binary versions but with restricted parameters. 

The parity-check matrices of these codes consist of a single row block of circulants and their negative extensions. These 

codes outperform over AWGN channel PEG and QC-PEG code constructions especially in the error floor region. 
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APPENDICES 

APPENDIX A 

Proof of Theorem 3 

The proof is built up on the fact that any 2 x 2 sub-matrix does not contain a loop of 4- cycle for three cases: 

positive – positive, negative – negative and positive – negative elements each others. 

For the first case: 

Consider a two-by-two sub-matrix X ⊂ Ai as 
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 X =  
a c
b d

 . 

In fact, a ≠ b as a appears once and only once at each row and column of Ai and so are a ≠ c, b ≠ d and c ≠ d. 

Hence, X has a loop of 4- cycle if and only if, 

a – b = c – d mod v.                                                                                                                                                  (1) 

For a – b > 0 and c – d > 0.                                                                                                                                    (A) 

This is impossible as a – b < v and a – b ≠ c – d for a,b,c and d ∈ Di  , i=1,2…t. 

For a – b < 0 and c – d > 0.                           (B) 

From (1) this implies that b = c & a = d, so (1) becomes, 2a = 2c mod v, this is impossible since, v is an odd 

number. 

For a – b > 0 and c – d < 0 is equivalent to a – b < 0 and c – d > 0.          (C)  

For a – b < 0 and c – d < 0 is equivalent to a – b > 0 and c – d > 0.           (D) 

For the second case: 

Consider a two-by-two sub-matrix X ⊂ Ai as, 

              X =  
−a −c
−b −d

 . 

This is equivalent to the first case as ∀ x ⊂ X→ x ∈ Dev(D). 

For the third case: 

Consider a two-by-two sub-matrix X ⊂ Ai as 

               X =  
a −c
b −d

 . 

Hence, X has a loop of 4- cycle if and only if 

a – b = d – c mod v.                             (2) 

For a – b < 0 and d – c > 0 as (B). 

From (2) this implies that a = c & b = d, so (2) becomes, 2a = 2c mod v. 

This is impossible since, v is an odd number                           (E) 

For a – b > 0 and d – c > 0 as (A). 

From (2) this implies that a = d & b = c, this condition does occur if and only if, k is even i.e. the number of 

elements in Di  divides 2 (the number „2‟ here represents the number of division part matrices in Ai i.e. here, there exist 

positive and negative parts)                             (F) 

For a – b > 0 and d – c < 0 is equivalent to (B).  

For a – b < 0 and d – c < 0 is equivalent to (A).                                                                                                        □ 
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APPENDIX B 

Proof of Theorem 4 

For this situation, the number of elements in Di  becomes k – 1. So, as (F) if k is even, then, k – 1 is odd. Hence,   

X does not exist.  

Hint: The eliminated dik  element is arbitrary and Ai here, is 2(k−1)×(k−1) circulant matrices.                                             □  

APPENDIX C 

Proof of Theorem 5 

To prove this theorem, We have to prove that for 0 < i < t the upper part (among the elements Ai
′ s), the lower part 

(among the elements Ai
"s) and the mixed part (among (

A1
′  

A1
"  

A2
′  

A2
" … .

A i
′  

A i
")) are free of 4-cycles, separately.  

Consider a two-by-two sub-matrix X as 

              X =  
a c
b d

 . 

Where a,b ∈ Ai
′  , c,d ∈ Aj

′  with 0 < i,j ≤ t, then, the pair of differences a – b & c – d satisfies the relation                 

a – b ≠ c – d mod v, due to the property of CDF or PDF. So, the matrices Ai
′  0 < i < t may not contain 4-cycles, adjacently.  

By the same way, it can also be proved that for a,b ∈ Ai
" , c,d ∈ Aj

" with 0 < i,j ≤ t, the matrices Ai
" 0 < i < t may 

not contain 4-cycles, adjacently. 

Now, consider the case where a ∈ Ai
′ , b ∈ Ai

" , c ∈ Aj
′  , d ∈ Aj

"  with 0 < i,j ≤ t, hence, X has a property that               

a – (-b) ≠ c – (-d) mod v ( follows from - b ∈ Ai
′ , -d ∈ Aj

′  ). So, X has a loop of 4- cycle if and only if,  

a–b=c–d modv                              (3) 

Consequently, a + b – 2b = c + d – 2d mod v and we have that a + b ≠ c + d mod v. So, relation (3) is satisfied if 

and only if a = b = c = d = 0 (0 shifts should be prevented).                                                                                                    □ 


